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Executive summary

The fall armyworm (FAW, Spodoptera frugiperda) is a lepidopteran pest recently
established in Australia. It feeds in large numbers on the leaves, stems and
reproductive parts of more than 350 plant species, causing major damage to
economically important crops. As this pest can migrate large distances over short
periods of time, regular monitoring and surveillance are vital. Knowing when the adult
moths are likely to appear in an area helps to inform monitoring for larvae and
proactive management if required.

We have created a novel wind-assisted long-distance dispersal model, incorporating a
spatially explicit cellular automata algorithm. The model can be used to simulate
dispersal trajectories of FAW based on weather forecast data. We have implemented
the model in a friendly web application, enabling users to make forwards predictions
of FAW movement from known populations as an early warning system, or to make
backwards predictions to identify the potential source of a newly discovered
population.

This dispersal model will add to the expanding toolkit of growers, agronomists, and
researchers in devising optimal management strategies to counter the threat posed by
this economically important pest species.
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Background

The fall armyworm (FAW, Spodoptera frugiperda) is a lepidopteran pest that feeds in
large numbers on the leaves, stems and reproductive parts of more than 350 plant
species, causing major damage to economically important grains such as maize, rice,
sorghum, sugarcane and wheat, as well as other vegetable crops and cotton. Native to
the Americas, it was first reported in Africa in January 2016, where it is now widely
established. It was subsequently reported in the Middle East and Asia in 2018. In
Australia, it was reported in January 2020 in the Torres Strait and subsequently
discovered in Queensland in February 2020. By February 2021, FAW was detected in
NSW and northern Victoria.

The large dispersal potential of FAW adults, wide host range of immature feeding
stages, and unique environmental conditions in its invasive range creates large
uncertainties in the expected impact on Australian plant production industries and
natural environments. Enhanced predictability of FAW population movement across
large spatial scales will support targeted surveillance, monitoring and management,
and thus reduce the impact of FAW in Australia. While some preliminary preparedness
work on FAW has been undertaken in Australia, including a predictive model for
seasonal activity potential (Maino et al. 2021), this model did not consider the role of
wind-assisted long-distance dispersal, and made the simplifying assumption of
random long-distance dispersal.

The role of atmospheric conditions on the long-range dispersal and deposition of FAW
has been shown to increase predictability of migrating populations (Westbrook and
Sparks 1986; Mitchell et al. 1991; Westbrook 2008; Westbrook et al. 2016; 2019). A
diverse range of atmospheric processes are known to facilitate insect transport (Drake
and Farrow 1988). In Australia, with a few exceptions (e.g., the south-east trade winds
affecting coastal northern Queensland or the winter westerlies of southern Australia),
there is a lack of seasonal prevailing winds (Gregg et al. 2001). Instead, Australia
typically sees sporadic and short-lived winds that are favourable for migration (i.e.,
sufficiently strong, and warm). Especially in spring, but also in summer, these are often
northerlies or north-westerlies, ahead of cold fronts. In summer, there are also the
post-frontal south-westerlies. Thus, in Australia, long-range wind-borne movementis
a more stochastic process, depending on migration-ready populations, local weather
conducive to nocturnal take-off and climbing to high altitudes, and atmospheric
transport mechanisms capable of carrying FAW across long distances. In the southern
half of Australia in spring, these conditions are often associated with the passage of
cold fronts, and the window of opportunity may be as short as a week (Drake 1994).
The presence or absence of these conditions can determine whether, in any given
season, moths will be found outside the range predicted by dispersal models such as
ours, or conversely, not found in locations where the model predicts they should be. It
will be important to determine whether FAW can exploit the same opportunities for
long range movement used by some endemic lepidopteran pest species, such as the
cotton bollworm (Helicoverpa punctigera; Drake 1994; Gregg et al. 2001).
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Methods

Recently, preliminary predictive modelling research on the seasonal occurrence of fall
armyworm in Australia was undertaken through the GRDC project (CES2004-003RTX)
“Preparedness and Management for fall armyworm (Spodoptera frugiperda)”. Notably,
this preliminary model made the simplifying assumption that long-distance dispersal
was random. In the current project, we relaxed this simplifying assumption of random
long-distance dispersal through the development of a novel wind-assisted long-
distance dispersal model. Specifically, we (1) compared our novel model to the
existing HYSPLIT model; (2) validated model predictions against observations of FAW
movements throughout eastern Australia in 2020-2021; and (3) developed a user-
friendly web tool for easy application of the model, providing industry users with
streamlined access to the model’s features and functionalities.

Cellular automata model for wind-assisted long-distance dispersal

The HYSPLIT model computes air parcel trajectories and deposition, or dispersion of
atmospheric pollutants (Stein etal. 2015; Rolph et al. 2017). It was jointly developed by
the United States’ National Oceanic and Atmospheric Administration (NOAA) and
Australia's Bureau of Meteorology (Draxler and Hess 1998). Nightly emigration flights
of FAW have been previously simulated by the HYSPLIT physical model (Westbrook et
al. 2019). While HYSPLIT represents the state-of-the-artin wind dispersion models, it
currently has several limitations. The model is complex and computationally intensive,
does not consider biological processes such as reproduction, nor other climatic
factors that may be limiting species survival and development (e.g., temperature). The
complexity of physically based models, lack of biology, and inability to produce fast
grid-based predictions make them unsuitable as an efficient early warning system.

Here, we generated a simple but efficient cellular automata (CA) algorithm to simulate
the potential migration paths and daily location of FAW. CA is a spatially explicit
technique that incorporates spatial interactions between cells and their
neighbourhood to generate a global pattern. The CA technique offers a versatile
method for modelling complex physical systems using simple operations (Wolfram
1984). This simplification dramatically reduces the computational load of a CA model
compared with physically based models such as HYSPLIT. Another key advantage of
the CA model over HYSPLIT is the capacity of the former to forecast/hindcast over a
grid with multiple locations or regions as the source populations. This feature may be
used to extend preliminary Australian FAW models that already consider the biology of
the species, seasonal population dynamics, and regional climatic suitability.

We used data from the NOAA global forecast system (GFS) to develop the data
pipeline and for the base development of the spatial and spatio-temporal CA method.
The GFS data includes daily wind U and V components (representing longitudinal and
latitudinal air movement, respectively) at different atmospheric levels from the Earth’s
surface to higher levels. The dataset has a 6-hour temporal resolution (i.e., itis
updated daily and four times per day at 0, 6, 12, and 18 hours UTC) ata 0.25 x 0.25
degrees spatial resolution (roughly 25 x 25 km).
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We wrote a pipeline in the R programming language v4.2.1 (R Core Team 2022) to
download the daily GFS data. For each forecast cycle we download forecasts for the
subsequent 48 hours, which can be then used to initiate the simulations. The U and V
wind components are downloaded at 850 and 950 mb atmospheric levels
(approximately 500 and 1400 m above sea level), as these are linked to long-distance
insect migration (Greenslade et al. 1999; Westbrook et al. 2019). They are then used to
calculate wind speed and direction using mathematical operations (Figure 1).

Figure 1: Estimated wind direction (arrows) and wind speed (arrow thickness) based on U and
V wind components. Source: GFS wind data.

The simulation model then implements a CA algorithm to simulate the movement of
particles with wind over a specific period (hourly steps of up to 48 hours) from a given
starting location. The algorithm uses the calculated speed and direction in each grid
cell at each step of simulation to simulate the movement of a particle through the grid.

In each step, the dispersal distance is calculated based on wind speed and cell size,
and dispersal direction is calculated based on wind direction plus a random change in
the direction of wind, which is drawn from a uniform distribution (Uniform [-30, 30];
units: decimal degrees). A backwards hindcast functionality is also available, wherein
the computed direction is reversed, and hourly steps are counted backwards.

Multiple simulations can be run with the same starting conditions, and from multiple
starting locations simultaneously, resulting in a map of frequencies of simulated
trajectories per grid cell, representing the probability of wind-assisted dispersal to
each cell (Figure 2). Simulation outputs can be exported as GIS grid formats that can
easily integrated into mechanistic biosecurity and ecological models (Maino et al.
2021). R code to run the simulation model is available in Appendix 1.

Project number: CE1805CR3 7



Wind-assisted dispersal for 48h starting on 2022-10-11 00:00 UTC; n = 167; Computation time: 28.12 minutes
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Figure 2: Map showing the frequency of particle trajectories from 167 starting points (marked in
red) crossing 0.25-degree cells in Australia. Frequency is colour-coded from 0 (white) to 100%
(green).

Comparison with the NOAA HYSPLIT simulations

To check the accuracy of the CA model we compared our results with the HYSPLIT
particle diffusion model. We ran both models for 100 randomly selected locations
across Australia on the same meteorological forecast cycles derived from the NOAA
GFS. The following parameters were used:

Start date: 11/10/2022 00:00 UTC.

Forecast period: 48 hours.

0.25 degrees spatial resolution (roughly 25 x 25 km).
Height: starting at 500 m (HYSPLIT), 950 mb (CA)

Pobd =

For each starting point we simulated the particle trajectory using the HYSPLIT model,
followed by 50 simulated trajectories using the CA model to account for the stochastic
elementin the CA model calculations. We then calculated the following two metrics for
each trajectory in each timestep:

Project number: CE1805CR3 8



Distance travelled, calculated as the greater circle distance between starting
point and location at current timestep, in km.

Azimuth between starting point and location at current timestep, with north =
0°.

Additionally, for the HYSPLIT models we recorded the elevation at each timestep in
atmospheric pressure [mb] (since the HYSPLIT model, unlike the CA model, allows
vertical movement of particles).

We used two different and complimentary approaches to compare the output of the
CA model to the HYSPLIT model:

1.

We generated distributions of trajectory metrics from the 50 CA simulations
and performed one-sample t-tests to compare to a population mean p equal to
the metric from the corresponding HYSPLIT trajectory. Thus, we tested the null
hypothesis that the CA trajectories are sampled from a distribution centred
around the HYSPLIT trajectory. We then tallied, for each metric, the number of
starting points in which the null hypothesis was rejected (i.e., the trajectories of
the CA simulations differ from the HYSPLIT trajectory) and the number of
starting points in which the null hypothesis was not rejected (i.e., the
trajectories of the CA simulations do not differ from the HYSPLIT trajectory).
We ran exact binomial tests to see if the number of “successes” (null not
rejected) out of the 100 starting points was higher than expected by chance.
We subtracted each metric of the HYSPLIT trajectory from all 50 simulated CA
trajectory metrics. To estimate differences in azimuth, we calculated the offset
between CA and HYSPLIT trajectories by taking the absolute value of
subtracting the HYSPLIT azimuth from the CA azimuth. This is equivalent to the
clockwise angle of the HYSPLIT trajectory compared to the CA trajectory. We
converted this offset value to radians. We then fit a generalised additive model
(GAM) using the R function ‘bam’ (suitable for large datasets) from the mgcv
package v1.8.40 (Wood 2011), with both forecast hour and spatial coordinates
of the starting point modelled using thin plate splines (Wood 2003). The GAM is
specified as:

y ~ s(t) + s(xn, yn) + s(h)

where y is the difference in the examined metric, tis the hour of forecast, nis
the starting point, and h is the elevation (in mb) of the HYSPLIT trajectory.
Thus, we tested whether the intercept (population mean) of the differences in
metrics differs from O (the expectation if the HYSPLIT and CA models produce
similar results), whether this difference changes with forecast hour, whether
the starting location has any effect on this difference (i.e., whether local
conditions change the congruence between the CA and HYSPLIT models), and
whether the elevation of the HYSPLIT model has any effect on this difference.
This model allows for a non-linear relationship between the response value and
the predictors. Additionally, by explicitly modelling the coordinates of the
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starting position, this model considers spatial relationships between the

different starting points and allows to examine whether deviations between the
CA and HYSPLIT model are spatially clustered.

Validation against empirical data on FAW migration

Data on FAW migration throughout eastern Australia were contributed by Dr Melina
Miles, principal entomologist at Queensland Department of Agriculture and Fisheries

(QDAF). The QDAF dataset consists of the results of pheromone traps deployed for ~7
days each, starting from 25" February 2020 until the end of 2021. Traps were initially

deployed in northern QLD, but rapidly became deployed in central and southern
Queensland, and eventually in NSW and Victoria as FAW spread throughout the
country (Figure 3).
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Figure 3: Maps showing the distribution of FAW throughout eastern Australia monthly, as
calculated from pheromone trap data (total number of FAW trapped divided by number of days

traps were open).
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In order to analyse how well the CA model can predict FAW migration, we first

performed spatial thinning on the trapping localities where FAW were trapped,

reducing them to a single locality per 0.25 x 0.25 degree cell. We then split the dataset

into 14-day intervals. We treated all cells with recorded FAW within the interval as
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starting locations for simulations. We ran 10 simulations from each starting location for
each day during the interval at 850 mb atmospheric level (approximately 1400 m
above sea level). Starting times were sunset at each day and simulations ran for the
number of hours between sunset and sunrise. Sunset and sunrise times were
calculated based on Julian date, latitude, and longitude using the photobiology
package v0.10.15 (Aphalo 2015). Simulation outputs for each interval were then
summed by calculating the number of trajectories passing through each cell and
converted to frequencies to generate a GIS dispersal probability layer with values
ranging from 0 to 1.

We then converted the original FAW sampling results into a binary variable by treating
all traps where no FAW were captured as 0 (absence) and all traps where at least one
FAW was captured as 1 (presence). We thus generated a spatial presence-absence
matrix for each 14-day interval. We then tested how well the dispersal probability layer
for each 14-day interval can predict the presence-absence matrix of the subsequent
interval. To do this, we generated the receiver operating characteristic (ROC) curve
for each interval using the ‘roc’ function from the pROC package v1.18.0 (Robin et al.
2011). The ROC curve is used to assess the performance of a binary classification
method with a continuous output (in our case dispersal probability), by showing the
sensitivity (proportion of correctly classified positive observations; in our case
presence, 1) and specificity (proportion of correctly classified negative observations;
in our case absence, 0) as the output threshold (the probability value above which a
cell is assigned as predicted presence) is moved across its range (0 to 1). The area
under the curve (AUC; ranging from 0 to 1) is calculated using the ‘auc’ function from
the pROC package for each ROC curve, with higher values representing a better
classification. Traditionally, an AUC of 0.5 suggests no discrimination (i.e., dispersal
probability cannot successfully predict presence or absence), 0.7 to 0.8 is considered
acceptable, 0.8 to 0.9 is considered excellent performance, and >0.9 is considered
outstanding performance (Hosmer and Lemeshow 2000).

We also compared the CA model’s performance to three distance-based null models,
by applying a distance buffer to each starting point. The buffer was created as a circle
around the starting point with a radius of cells equivalent to the length (in hours) of
night (see above), representing a movement of one cell per hour. The three models
were:

1. Uniform: all cells within the distance buffer receive a value of 1, representing
equal probability of dispersal to any point within the distance buffer.

2. Linear: the probability of dispersal in each cell i was calculated as:
p = (dmax - dl) [ dmax
where diis the distance from cell i to the starting cell, and dmax is the maximum
distance. This represents a probability of dispersal that decreases linearly with
distance from the starting point.

3. Exponential: the probability of dispersal in each cell i was calculated as:
p = e—di / e—dmax
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where diis the distance from cell i to the starting cell, and dmax is the maximum
distance. This represents a probability of dispersal that decreases
exponentially with distance from the starting point.

ROC curves were generated and AUC values calculated for the null models as
described above for the CA model. We then analysed whether AUC values change
with time and between CA and the null models by fitting a GAM with a beta regression
family using the mgcv package with the following formula:

AUC: ~ s(N;, by = M)

Where AUCiis the AUC of interval i, Niis the sequential number of the interval i, and M
is a factor describing the model under examination used in factor smooth interactions,
allowing different smooth parameters for different levels of the factor.

Results
Comparison with the NOAA HYSPLIT simulations

Overall, our validation efforts suggest that congruence between HYSPLIT and CA
model trajectories is relatively low and decreases over longer forecast hours.

When comparing HYPSLIT and CA, the null hypothesis (no difference) was rejected
more often than expected by chance for all timesteps for distance (p value of binomial
exact test < 0.01 for all timesteps), suggesting CA and HYSPLIT models differ in
travelled distances. Earlier during forecasts, the congruence between CA and
HYSPLIT is higher for azimuth, and the binomial exact tests suggest angles of travel
do not differ much between CA and HYSPLIT for the first four timesteps (null not
rejected more often than it wasn’t; p > 0.6). From the fifth timestep onwards, all
binomial exact tests suggest that azimuth significantly differs between CA and
HYSPLIT (p = 0.01), and congruence diminished to similar, albeit slightly higher, levels
as for distance (Figure 4; Table 1).
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Figure 4: Proportion of trajectories, out of 100 random starting points, in which the null
hypothesis (the distribution of CA trajectory metrics sampled from a population with a mean
equal to the HYSPLIT trajectory) was rejected, at each timestep of forecast.

Table 1: Summary of comparisons of HYSPLIT and CA simulations. The % Distance and %
Azimuth columns list the percentage of trajectories, out of 100 random starting points, in which
the null hypothesis (the distribution of CA trajectory metrics sampled from a population with a
mean equal to the HYSPLIT trajectory) was rejected in a one sample t-test. The p Distance and
p Azimuth columns list the p-values of associated binomial exact tests to assess whether the
proportion significantly differs from 0.5.

Forecast hour % Distance p Distance % Azimuth p Azimuth
1 92% 0.00 50% 1.00
2 96% 0.00 50% 1.00
3 96% 0.00 53% 0.62
4 97% 0.00 52% 0.76
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The fitted GAMs (Table 2) suggest that the difference in distance is centred around 0O,

at least in early hours of forecast, but large divergences in predicted distance

travelled (> 500 km) occur after ~12 hours of forecast (Figure 5A). These divergences

are also biased towards a negative difference between CA and HYSAPLIT distances,
meaning that, on average and after taking spatial patterns into account, CA predicts

shorter distances travelled than HYSPLIT. For offsetin angle, there is large variation in

offset for all forecast hours, with most points between 0° and 90°. Thus, the fitted
GAMs suggest a consistent predicted offset of ~23-57° in the HYSPLIT trajectory
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compared to the CA trajectory, meaning HYSPLIT trajectories are consistently
somewhat clockwise compared to CA trajectories (Figure 5B).

A) B}

Difference in distance traveled tkm; GA - HYSPLIT)
Feracast hour

4 * 4
Forecast hour Offzet in angle between CA and HYSPLIT

Figure 5: Observations (grey points) and model predictions (gold and green coloured lines, with
confidence intervals in lighter shades) of (A) difference in distance travelled (gold), and (B)
offset in angle (green) between HYSPLIT and CA models as a function of forecast hour.

The GAMs suggest spatial clustering in the effects on distance differences and angle
offset (p < 0.01 and p = 0.03, respectively). Some regions “pull” the differences in
distances in a shorter or longer direction, and some “pull” the offset in angle in a more
clockwise or anti-clockwise direction, but there is overall weak congruence between
these regions. This is likely due to spatial autocorrelation in wind regimes and might
suggest that the accuracy of model predictions can be spatially dependent on the
starting location of a simulation.

The elevation of the HYSPLIT model has a significant effect on difference in distance
travelled (p < 0.01) but not on offset in angle (p = 0.79). A closer inspection of the
partial effects plot of elevation on the two different metrics shows that the differences
are minimised around elevations close to 500 m (Figure 6), roughly equivalent to the
950 mb atmospheric level at which CA simulations were run. Thiswould suggest that a
major reason for the lack of congruence between HYSPLIT and CA could be that the
HYSPLIT model includes vertical movements of particles; that is, particles can be
exposed to differing wind regimes as they change in elevation. Conversely, the CA
model makes predictions at a constant elevation, carrying the implicit assumption that
there is no vertical movement. This difference in vertical movement being a strong
driver of the difference in model predictions is supported by the predicted differences
in azimuth increasing with forecast hour (Figures 4 & 5B), as the longer the simulations
run for, the more likely they are to diverge in altitude (Figure 7).
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Figure 6: Partial effects of elevation of HYSPLIT simulation (in mb) on difference in distance
travelled (gold) and offset in angle (green). The dashed red line represents 950 mb, the
elevation used for the CA simulations.
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Altitudinal trajectories of HYSPLIT simulations
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Figure 7: Altitudinal trajectories of all simulated HYSPLIT trajectories. Grey lines represent
individual simulated trajectories, with grey dots representing the maximum altitude reached by
each trajectory. The blue line represents the average across all 100 simulated trajectories. The
dashed red line represents 500 m, the starting point for all simulations and roughly equivalent
to 950 mb, which was set as the elevation for all CA simulations.

Table 2: Summary of GAMs comparing differences in distance travelled and offset in angle

(azimuth) between HYSPLIT and CA simulations. The EDF column lists the effective degrees of

freedom for each predictor, a measure of non-linearity (EDF = 1 equivalent to linear
relationship, EDF > 1 and = 2 weakly non-linear relationship, EDF > 2 highly non-linear
relationship; Zuur et al. 2009), the p column lists the p-value for the predictor, and the R?
column lists the R? of the entire model.

Metric Predictor EDF P R?
Distance Hour of forecast 8.06 < 0.01 0.083
Spatial coordinates 27.42 < 0.01
Elevation 7.7 < 0.01
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Azimuth Hour of forecast 8.91 < 0.01 0.037
Spatial coordinates 17.33 0.03

Elevation 1.52 0.79

Whether the CA assumption of vertical stability is valid for modelling FAW movements
is currently unknown and depends on FAW capacity to shift their vertical position in
the air column during migration flight. However, several HYSPLIT trajectories include
particles travelling to altitudes well over 5000 m (Figure 7), and these may certainly be
biologically unrealistic for FAW movement due to low temperatures inhibiting flight,
meaning that HYSPLIT’s implicit assumption of complete vertical mobility depending
on wind regimes is also untested and may not be valid.

Several directions forward present themselves: predictions with the CA model can be
limited to relatively short forecast periods (e.g., up to ~12h) to limit deviation from
HYSPLIT predictions. Alternatively, attempts can be made to include vertical
movements into the CA modelling framework based on vertical components of wind,
although that may come at the cost of computational efficiency and carries the implicit
assumption of HYSPLIT models of complete vertical mobility. A promising approach is
to simulate CA trajectories for several different constant flight elevations, spanning a
biologically plausible range (e.g., Wu et al. 2022). Then, model predictions can be
summed over the different elevations, representing relative probabilities of dispersal
over a range of flight altitudes and trajectories. However, this approach would greatly
compound the number of simulations necessary to make predictions, and so would
require adapting the CA simulation code to a faster programming environment to be
practical.

Validation against empirical data on FAW migration

Across all models (CA and three null distance-based models; uniform, linear and
exponential), predictive capability as measured by AUC is relatively high (mean AUC
per model 0.70-0.92) when predicting FAW presence between February to October
2020, after which model AUC drops considerably (mean AUC per model 0.52-0.70).
However, the models also differ from each other substantially in initial mean AUC and
in the degree of drop-off (Figure 8). The fitted GAM model supports different smooth
parameters for each model (Table 3).
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Figure 8: Scatterplots showing the distribution of AUC values per dispersal model per date
interval, with the size of points corresponding to the number of occupied cells in the raster
(presence points). The coloured lines and shaded areas represent the predictions and 95% ClI
from the fitted GAM model. The dashed blue vertical line represents the start of October 2020,
the cut-off between the early (expansion) period and the late (established) period.

Table 3: Summary of GAM comparing AUC as a function of date interval under different
dispersal models. The EDF column lists the effective degrees of freedom for each smooth
parameter, a measure of non-linearity (EDF = 1 equivalent to linear relationship, EDF > 1 and =
2 weakly non-linear relationship, EDF > 2 highly non-linear relationship; Zuur et al. 2009), the p
column lists the p-value for the smooth parameter, and the R? column lists the R? of the entire
model.

Model EDF p R?
CA 1.00 0.03 0.245
Null (uniform) 2.06 < 0.01
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Null (linear) 2.82 < 0.01

Null (exponential) 3.15 < 0.01

The cutoff period of October 2020 seems to correspond well to a shiftin FAW
dynamics from few occupied localities to many occupied localities, reflected both in
the number of presence points but also in the proportion of traps with successful FAW
captures (Figure 9). These two periods, which we term here ‘early (expansion)’ and
‘late (established)’, appear to correspond well to the theoretical expectations from
invasion biology (Allendorf and Lundquist 2003; Ricciardi 2012), wherein an invasive
species can experience a lag period between initial establishment and exponential
population growth (Crooks and Soulé 1999; Crooks 2005). Our models would suggest
that long-distance dispersal has a much stronger predictive capability in this initial
stage, presumably due to local demographic effects and short-distance dispersal
becoming more important once the population is established.

Early (expansion) Late (established)

0.754
[ ) Number of occupied cells

0.50 4
' ® Number of occupied cells

® 10
® P @® 20
e .. @ 3
@ «
® @ @ =

Proportion of occupied cells

0.254

'
S
o
®

Figure 9: Scatterplot showing the temporal dynamics of the FAW spread through eastern
Australia. The y-axis captures the proportion of occupied cells in the raster out of all cells
where traps were deployed. The size and colour of the dots corresponds to the absolute
number of occupied cells. The dashed blue line corresponds to the start of October 2020,
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where we see a shift from low proportion and number of occupied cells (early period) to mid-
high proportion and high number of occupied cells (late period).

We ran a two-factor analysis of variance (ANOVA) to examine whether dispersal
models differ in their AUC scores between each other within and among the two
periods. In both periods, the distance-based linear and exponential dispersal models
clearly outperform the CA model, and both have outstanding predictive performance
(AUC > 0.9; Figure 10). Meanwhile, the CA model has adequate performance in the
early period that is not statistically distinguishable from the uniform null model (p =
1.00), and poor performance in the late period. However, the uniform null model
performs worst in the late period and is no better than random (Figures 8 & 10).
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Figure 10: Comparison of model performance for CA and three null dispersal models. (A)
Boxplots showing the distribution of AUC values of the four models in the two time periods.
The dashed horizontal red line represents an AUC of 0.5 - equivalent to random classification.
(B) Results of a post-hoc Tukey test comparing the mean AUC values of the different models in
the two time periods. The dashed vertical red lines represent a difference of 0 in means. The
whiskers represent the upper and lower confidence intervals of the estimate of differences in
the examined pair of models — whiskers that overlap 0 mean there is no statistically significant
difference between the two means.

The relatively poor performance of the CA model compared to the distance based
linear and exponential models is intriguing and poses questions that will require future
research. Three possible reasons appear most plausible:

1. The model makes several unrealistic biological assumptions due to lack of
relevant data. It is established that noctuid moths engage in nocturnal
migration beginning at dusk at elevations of ~500 m (Wood et al. 2009) and
their migration flights are strongly assisted by tailwinds (Alerstam et al. 2011).
However, it is also known that noctuid moths are strongly selective of winds
blowing towards preferred directions (Alerstam et al. 2011) and very little is
known about FAW selective behaviour regarding migration cues and duration of
nightly flights. More data on the biology of FAW migratory behaviour will help to
create more realistic and plausible parameters for model simulations and could
increase predictive performance.

2. The empirical dataset used for validation, while extensive, was not sampled
systematically in a method designed to validate a dispersal model. Localities
were not sampled sequentially in a constant manner. Therefore, the dataset
might not be fully suited to validate the dispersal model.

3. Spatial spread of FAW is a result of both long-distance and short-distance
dispersal, the latter of which is presumably less contingent on wind movements
at high elevations. Therefore, the distance-based dispersal models, which are
agnostic to direction, might be better suited to capture these movements.

Web tool

We have developed a web application for growers and agronomists to easily access
and interact with the wind-dispersal model. This web application was developed with
R Shiny (Chang et al. 2022) and is currently hosted on Cesar Australia's web servers
(Figure 11). The application is currently being reviewed by stakeholders and will be
made publicly available on Cesar Australia’s website pending final approval.

The application automatically sources new weather forecasts from GFS daily at 9:00
AM Australian Eastern Standard Time (shortly after the release of the equivalent 18:00
UTC forecast cycle). Forecast data are stored for a week before being cleared from
the memory cache.

The application can be used in two ways:
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1. Forecast dispersal from a location with a known FAW infestation: this can be
used to give likely movements of FAW for up to 48 hours and can serve as an
early warning system for agronomists and growers that FAW may arrive at their
paddock soon.

2. Hindcast dispersal from a location with a novel FAW infestation: this can be
used to investigate where the new infestation originated from and can help in
tracking FAW movements and spread.

The application was designed to allow end-users with no coding experience to access
and interact with the model. Users can select a location in Australia to run simulations
- this can be done either by inputting latitude and longitude, or by clicking on an
interactive map. Simulations can then be run to either forecast or hindcast dispersal -
in the former the selected locality will serve as a starting point, and in the latter as the
end point. Users can determine the start time (for a forecast) or end time (for a
hindcast) of the simulation converted to the time zone of their choice. Users then
choose the length of the simulation in hours. Ten simulations are then run at an
atmosphericlevel of 950 mb (approximately 500 m above sea level). An output map is
generated showing the frequency of simulated trajectories. The map includes a colour
scale, and so can be easily interpreted as the predicted probability of dispersal
pathways.

Wind Forecast Tool v0.4.2

Forecast initiated at 2023-06-24 18:00 Australia/Melbourne | Duration: 12 hours

Forward - Longltude: 145 Latitude: -37.8
25°S

30°S

Frequency
100
35°S

75
50
25

18:00 hd

Latitude

Total run time (hours) 40°S

45°5

145 378 50°S
Plpua NGgin] I 130°E 135°E 140°E 145°E 150°E 155°E 160°E

Lengitude

Figure 11: Version 0.4.2 of the Wind Forecast Tool web application. The user inputs (on the left)
consist of the direction of simulation (forward/backward), timezone, time and starting location
of the simulation, and duration of simulation. The app then runs 10 simulations using the input
parameters and generates the output (on the right): a map showing frequencies of simulated
trajectories.
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Conclusion

We have developed a novel CA model of wind-assisted dispersal for FAW, which may
be easily accessed and interacted with through a user-friendly web application to
fore- and hindcast FAW movements. This has implications both for early-warning
biosecurity surveillance, as well as for general research into invasion pathways.

Some limitations for widespread use of the model are still evident. Our comparison
efforts show that the CA model produces slightly different results from the industry
standard physical HYSPLIT model. These differences appear to stem mostly from
vertical mobility—HYSPLIT allows trajectories to change in elevation based on vertical
wind components, whereas our CA model operates at a set and predetermined
atmospheric layer. This assumption may be relaxed somewhat in future extensions of
the CA model - however, to which extent remains an open question. With both
HYSPLIT and CA, a biologically realistic upper elevation bound should be set to reflect
physiological limits beyond which FAW cannot survive. Beyond that, the degree to
which FAW can actively control their vertical position in the air column, and not just be
passively carried by winds, needs to be determined.

Similarly, validation of the model against empirical data revealed that a simple
distance-based dispersal model can often outperform the spatially explicit CA model
in predicting FAW occurrence. Whether this is due to limitations of the model itself, or
whether wind-assisted long-distance dispersal is not an important contributor to
spatial spread of FAW remains to be determined. The silver lining is that relatively
simple distance-based long-distance dispersal models, such as the one used in FAW
demographic modelling by Maino and colleagues (2021), can be adequate to model
spatially explicit population dynamics, at least during the establishment stage of a
biological invasion - or at the leading edge of an invasion front.

Further research into FAW migration in Australia will be necessary to uncover
migration cues, movement biology, and flight behaviour. These data will be important
to improve dispersal models by incorporating biologically plausible parameters, and to
adequately validate the performance of dispersal models. Regardless, our model can
still prove extremely useful to growers and agronomists. By incorporating our model
into an easy-to-use web application, we have equipped users with a simple tool to
receive early warnings of possible FAW incursions. While the model cannot yet predict
FAW presence with certainty, it can provide a warning that conditions are suitable for
FAW. This is an important step towards a more comprehensive surveillance and
mitigation strategy for this economically important pest species.
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Appendix 1. R code to run CA wind-assisted dispersal
model

Background

The fall armyworm (FAW, Spodoptera frugiperda) is a lepidopteran pest recently
established in Australia. It feeds in large numbers on the leaves, stems and
reproductive parts of more than 350 plant species, causing major damage to
economically important crops.

The CA wind-assisted dispersal model for the FAW was developed under Cesar
Australia project CE1805CR3, with funding by Plant Health Australia. It uses gridded
weather forecast data on wind speed and direction to calculate spatial trajectories of
FAW based on user-provided input parameters.

Model structure

The following helper functions are used to extract wind U and V components from
weather data, to calculate wind speed and direction from U and V components, and to
convert calculated directions to cells in a grid.

# extract the component from names
gfs_names <- function( "Data/") {
require(dplyr)
require(purrr)

files <- list.files(path, "ngfs ", FALSE)

gfs_names <- strsplit(files, " ") %>%
map (function(x) {
matrix(x, 6, FALSE) %>%

as.data.frame() %>%
setNames (c("gfs", "comp", "level", "date", "start", "forecast")) %>%
dplyr::select(-gfs)

}) %>%

do.call(rbind.data.frame, .) %>%

mutate ( files) %>%

relocate(file)

return(gfs_names)

}

wind_direction <- function(u, v) {
require(terra)
at <- 180 + (atan2(u, v) * 180 / pi)
ad <- terra::app(at, function(x)
X %% 360)
return(ad)

}

wind_speed <- function(u, v) {
require(terra)
r <- sqrt(v * v + u * u)
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return(r)

}

# read the u component

read_u <-
function (

"Data/",

files_list,
fcast,
"850mb" )
files_list %>%

{

dplyr::filter(comp == "ugrd") %>%

dplyr::filter(level

== lev) %>%

dplyr::filter(forecast == fcast) %>%

pull (file) %>%

file.path(path, .) %>%

terra::rast()

}

# read the u component
read_v <-
function ( "Data/",

files_list,
fcast,
"850mb" )
files_list %>%

{

dplyr::filter(comp == "vgrd") %>%

dplyr::filter(level

== lev) %>%

dplyr::filter(forecast == fcast) %>%

pull (file) %>%

file.path(path, .) %>%

terra::rast()

}

inc <- 1
# define the direction

next_cell <- function(x, i, j) {

if (x <= 22.5 || x > 337.5) {

## N
return(c(i, j + inc))

} else if (x > 22.5 & & x <= 67.5) {

## NE
return(c(i - inc, j +

inc))

} else if (x > 67.5 & & x <= 112.5) {

## E

return(c(i - inc, j))
} else if (x > 112.5 &&

## SE

return(c(i - inc, j -
} else if (x > 157.5 &&

## S

return(c(i, j - inc))
} else if (x > 202.5 &&

## SW

return(c(i + inc, j -
} else if (x > 247.5 &&

## W

return(c(i + inc, j))
} else if (x > 292.5 &&

X <= 157.5) {

inc))
X <= 202.5) {

X <= 247.5) {
inc))

X <= 292.5) {

X <= 337.5) {

Project number: CE1805CR3

32



## NW
return(c(i + inc, j + inc))
}
}

The model itself is run with a single function. It sources weather forecast data from
the selected filepath and runs simulations with the input specifications. Simulations
can be run from multiple localities, can be forecast or hindcast, and can be run in
parallel. The parallel application is highly recommended if simulating multiple starting
locations.

# simulate wind dispersal with cellular automata
wind_sim <-
function(data path = "wind-data",
# filepath to weather data
coords = list(),
# Llist of starting coordinates, each a vector of c(longitude, Llatitude)
nforecast = 24,
# number of forecast hours
nsim = 10,
# number of simulations to calculate frequency
fdate = "20220524",
# the forecast data
fthour = "18",
# the forecast hour
atm_level = "850mb",
cellsize = 25000,
full = F,
# 1f TRUE, generate a dataframe of endpoints per time step
parallel = F,
# 1f TRUE run in parallel
ncores = F,
# 1f FALSE (default) use max number of cores - 1. Else set to number of
cores to use
backwards = F) {
# 1f FALSE (default) run forwards simulation from starting point. Else backwar
ds from end point

require(tidyverse)
require(terra)

difference = 0

if (backwards) {
fdate = as.character(format(
as .POSIXct(lubridate::ymd(fdate) - lubridate::hours(23), format = "%m/%d/%
Y %H:%M:%S"),
format = '%Y%m¥%d'

))

fhour = as.character(lubridate: :hour(
lubridate::hours(as.numeric(fhour)) - lubridate::hours(nforecast)
) %% 24)

# define the interval
interval <- c("@0", "@6", "18")
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# calculate the index of the closest interval
index <-
which.min(abs(as.numeric(fhour) - as.numeric(interval)))

# calculate the difference
difference <-
as.numeric(fhour) - as.numeric(interval[index])

# get the corresponding interval
fhour <- interval[index]

}
pathway <- file.path(data_path, fdate, fhour)
files <- gfs_names(path = pathway)

if (parallel) {
require (doSNOW)
require (foreach)

cores = parallel::detectCores(logical = T)
if (!is.numeric(ncores))
ncores <- cores[1l] - 1
else
if (ncores > cores[1])
stop("Number of cores must be equal to or less than available cores in s
ystem")

ncores = min(ncores, length(coords))
print(paste("Running in parallel using", ncores, "cores"))

cl <- makeCluster(ncores)
registerDoSNOW(cl)

print("Simulating:")
pb <-
txtProgressBar(
min = @,
max = length(coords),
style = 3,
char = "="
)
progress <- function(n)
setTxtProgressBar (pb, n)
opts <- list(progress = progress)

npoint <-
foreach(
point = 1:length(coords),
.packages = c("tidyverse", "terra"),
.export = c(
"read_u",
"read_v",
"wind_speed",
"wind_direction",
"next_cell”
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)s

) %dopar% {
r <- terra::rast(file.path(data_path, files$file[1]))

opts

# extract coordinates
long = coords[[point]][1]
lat = coords[[point]][2]

# empty raster for simulations
fct_raster <- r

fct_raster[] <- ©

names(fct_raster) <- "wind forecast”

xlen <- terra::ncol(r)
ylen <- terra::nrow(r)

# weights for the output
wt <- c¢(1, 1, 1, 1, 3, 1, 1, 1, 1)

points_full <-
tibble(
numeric(),
numeric(),
numeric(),
numeric()

)

for (rep in seq_len(nsim)) {
points <- data.frame(
colFromX(r, long),
rowFromY(r, lat),
0

)

n <-1

for (f in seq_len(nforecast)) {
X <- points[n, 1]

y <- points[n, 2]

forecasts <- unique(files$forecast)

u <-
read_u(
data_path,
files,
forecasts[f],
atm_level
)
vV <-
read_v (
data_path,
files,
forecasts[f],
atm_level
)
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ps overall

# calculate wind speed and direction
speed <- wind_speed(u = u, v = v)
direction <- wind_direction(u = u, v = v)
speed_ctr <- speed[y, x][1, 1]

## calculate the number of steps based on wind speed and cell size
# 1f we choose at least 1 step each time there could be too many ste

# when the speed is low that results in overshooting, 1i.e. trajector

ies Llonger than reality

t not always

}

# this could be happening because of coarse raster resolution
# so I made it random, to have some movement with Low wind speed, bu

steps <-
max (sample(®:1, 1), ceiling(speed_ctr * 3600 / cellsize))

if (steps < 1)
next

for (e in seq_len(steps)) {
nbr_dir <- c()
nbr_spd <- c()
for (i in c(-1, o, 1)) {
for (j in c(-1, 0, 1)) {
if (x + 1 < xlen & y + j < ylen) {
nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1])
nbr_spd <-
c(nbr_spd, speed[y + j, x + i][1, 1])
}
}

}
# multiply the weight with the speeds

probs <- wt * nbr_spd
# add some randomness to the direction
selected_dir <-
sample(x = nbr_dir,
size = 1,
prob = probs)
selected_dir <-
selected _dir + runif(1, -30, 390)
# keep the random direction within ©-360
selected_dir <- selected_dir %% 360
# calculate the next point
newpoint <- next_cell(selected dir, x, y)
fct_raster[newpoint[2], newpoint[1]] <-
fct_raster[newpoint[2], newpoint[1]][1, 1] + 1

n<-n+1

points[n, "x"] <- newpoint[1]
points[n, "y"] <- newpoint[2]
points[n, "nforecast"] <- f

}

if (full)
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points_full <- bind_rows(
points_full,
as_tibble (xyFromCell(

r,
cellFromRowCol(r,
points[, "y"],
points[, "x"])
)) %>%
mutate(
rep,
points$nforecast,
long,
lat
)
)
}
if (full)
list(raster::raster(fct_raster), points_full)
else
raster: :raster(fct_raster)
}
close(pb)
stopCluster(cl)
} else {

r <- terra::rast(file.path(pathway, files$file[1]))
npoint <- list()

print("Simulating:")
progress_bar = txtProgressBar(
9,
length(coords) * nsim * nforecast,
3,

)

for (point in 1:1length(coords)) {
# extract coordinates
long = coords[[point]][1]
lat = coords[[point]][2]

# empty raster for simulations
fct_raster <- r

fct_raster[] <- ©

names (fct_raster) <- "wind forecast”
xlen <- terra::ncol(r)

ylen <- terra::nrow(r)

# weights for the output
wt <- c(1, 1, 1, 1, 3, 1, 1, 1, 1)

points_full <-
tibble (
numeric(),
numeric(),
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nsim = numeric(),
nforecast = numeric()

)

for (rep in seq_len(nsim)) {
points <- data.frame(
x = colFromX(r, long),
y = rowFromY(r, lat),
nforecast = @

)
n<-1

forecast_hours <- seq_len(nforecast)
if (backwards)
forecast_hours <- rev(forecast_hours)

for (f in forecast_hours) {
X <- points[n, 1]
y <- points[n, 2]

forecasts <- unique(files$forecast)

u <-
read_u(
path = pathway,
files_list = files,
fcast = forecasts[f + difference],
lev = atm_level
)
vV <-
read_v(
path = pathway,
files_list = files,
fcast = forecasts[f + difference],
lev = atm_level

)

# calculate wind speed and direction
speed <- wind_speed(u = u, v = v)
direction <- wind_direction(u = u, v = v)

if (backwards)
direction <- (direction + 180) %% 360

speed_ctr <- speed[y, x][1, 1]

## calculate the number of steps based on wind speed and cell size

# 1f we choose at lLeast 1 step each time there could be too many steps
overall

# when the speed is Llow that results in overshooting, i.e. trajectorie
s Longer than reality

# this could be happening because of course raster resolution

# so I made it random, to have some movement with Low wind speed, but
not always

steps <-

max(sample(0:1, 1), ceiling(speed ctr * 3600 / cellsize))
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if (steps < 1)
next

for (e in seq_len(steps)) {
nbr_dir <- c()
nbr_spd <- c()
for (i in c(-1, 0, 1)) {
for (j in c(-1, 0, 1)) {
if (x + 1 < xlen & y + j < ylen) {
nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1])
nbr_spd <-
c(nbr_spd, speed[y + j, x + i][1, 1])
}
}

}
# multiply the weight with the speeds

probs <- wt * nbr_spd
# add some randomness to the direction
selected_dir <-
sample( nbr_dir,
1,
probs)
selected_dir <- selected dir + runif(1, -30, 30)
# keep the random direction within 0-360
selected_dir <- selected_dir %% 360
# calculate the next point
newpoint <- next_cell(selected dir, x, y)
fct_raster[newpoint[2], newpoint[1]] <-
fct_raster[newpoint[2], newpoint[1]][1, 1] + 1

n<-n+1

points[n, "x"] <- newpoint[1]
points[n, "y"] <- newpoint[2]
points[n, "nforecast"] <- f

}

setTxtProgressBar(progress_bar,
(point - 1) * nsim * nforecast +
(rep - 1) * nforecast +
which(forecast_hours == f))

}

if (full) {
points_full <- bind_rows(
points_full,
as_tibble(xyFromCell (
r,
cellFromRowCol(r,

points[, "y"],
points[, "x"])
)) %>%
mutate (
rep,
points$nforecast,
long,
lat
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)
)
npoint[ [point]] <-
list(raster::raster(fct_raster), points_full)

} else
npoint[[point]] <- raster::raster(fct_raster)
}
}
}
if (full) {

fct_raster <- stack(lapply(npoint, "[[", 1))
fct_raster <- raster::calc(fct_raster, sum)
fct_raster[fct_raster == 0] <- NA
points_full <- lapply(npoint, "[[", 2)
return(list(rast(fct_raster), bind_rows(points_full)))
} else {
if (length(npoint) > 1) {
fct_raster «<-
ifelse(length(npoint) > 1,
stack (npoint),
as (fct_raster, "Raster"))
fct_raster <- raster::calc(fct_raster, sum)
} else
fct_raster <- raster::raster(fct_raster)

fct_raster[fct_raster == 0] <- NA
return(rast(fct_raster))
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