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# extract the component from names 
gfs_names <- function(path = "Data/") { 
  require(dplyr) 
  require(purrr) 
   
  files <- list.files(path, pattern = "^gfs_", recursive = FALSE) 
   
  gfs_names <- strsplit(files, "_") %>% 
    map(function(x) { 
      matrix(x, ncol = 6, byrow = FALSE) %>% 
        as.data.frame() %>% 
        setNames(c("gfs", "comp", "level", "date", "start", "forecast")) %>% 
        dplyr::select(-gfs) 
    }) %>% 
    do.call(rbind.data.frame, .) %>% 
    mutate(file = files) %>% 
    relocate(file) 
   
  return(gfs_names) 
} 
 
wind_direction <- function(u, v) { 
  require(terra) 
  at <- 180 + (atan2(u, v) * 180 / pi) 
  ad <- terra::app(at, function(x) 
    x %% 360) 
  return(ad) 
} 
 
wind_speed <- function(u, v) { 
  require(terra) 
  r <- sqrt(v * v + u * u) 



  return(r) 
} 
 
# read the u component 
read_u <- 
  function(path = "Data/", 
           files_list, 
           fcast, 
           lev = "850mb") { 
    files_list %>% 
      dplyr::filter(comp == "ugrd") %>% 
      dplyr::filter(level == lev) %>% 
      dplyr::filter(forecast == fcast) %>% 
      pull(file) %>% 
      file.path(path, .) %>% 
      terra::rast() 
  } 
# read the u component 
read_v <- 
  function(path = "Data/", 
           files_list, 
           fcast, 
           lev = "850mb") { 
    files_list %>% 
      dplyr::filter(comp == "vgrd") %>% 
      dplyr::filter(level == lev) %>% 
      dplyr::filter(forecast == fcast) %>% 
      pull(file) %>% 
      file.path(path, .) %>% 
      terra::rast() 
  } 
 
next_cell <- function(x, i, j) { 
  inc <- 1 
  # define the direction 
  if (x <= 22.5 || x > 337.5) { 
    ## N 
    return(c(i, j + inc)) 
  } else if (x > 22.5 && x <= 67.5) { 
    ## NE 
    return(c(i - inc, j + inc)) 
  } else if (x > 67.5 && x <= 112.5) { 
    ## E 
    return(c(i - inc, j)) 
  } else if (x > 112.5 && x <= 157.5) { 
    ## SE 
    return(c(i - inc, j - inc)) 
  } else if (x > 157.5 && x <= 202.5) { 
    ## S 
    return(c(i, j - inc)) 
  } else if (x > 202.5 && x <= 247.5) { 
    ## SW 
    return(c(i + inc, j - inc)) 
  } else if (x > 247.5 && x <= 292.5) { 
    ## W 
    return(c(i + inc, j)) 
  } else if (x > 292.5 && x <= 337.5) { 



    ## NW 
    return(c(i + inc, j + inc)) 
  } 
} 

# simulate wind dispersal with cellular automata 
wind_sim <- 
  function(data_path = "wind-data", 
           # filepath to weather data 
           coords = list(), 
           # list of starting coordinates, each a vector of c(longitude, latitude)  
           nforecast = 24, 
           # number of forecast hours 
           nsim = 10, 
           # number of simulations to calculate frequency 
           fdate = "20220524", 
           # the forecast data 
           fhour = "18", 
           # the forecast hour 
           atm_level = "850mb", 
           cellsize = 25000, 
           full = F, 
           # if TRUE, generate a dataframe of endpoints per time step 
           parallel = F, 
           # if TRUE run in parallel 
           ncores = F, 
           # if FALSE (default) use max number of cores - 1. Else set to number of 
cores to use 
           backwards = F) { 
    # if FALSE (default) run forwards simulation from starting point. Else backwar
ds from end point 
     
    require(tidyverse) 
    require(terra) 
     
    difference = 0 
     
    if (backwards) { 
      fdate = as.character(format( 
        as.POSIXct(lubridate::ymd(fdate) - lubridate::hours(23), format = '%m/%d/%
Y %H:%M:%S'), 
        format = '%Y%m%d' 
      )) 
       
      fhour = as.character(lubridate::hour( 
        lubridate::hours(as.numeric(fhour)) - lubridate::hours(nforecast) 
      ) %% 24) 
       
      # define the interval 
      interval <- c("00", "06", "18") 



       
      # calculate the index of the closest interval 
      index <- 
        which.min(abs(as.numeric(fhour) - as.numeric(interval))) 
       
      # calculate the difference 
      difference <- 
        as.numeric(fhour) - as.numeric(interval[index]) 
       
      # get the corresponding interval 
      fhour <- interval[index] 
    } 
     
    pathway <- file.path(data_path, fdate, fhour) 
     
    files <- gfs_names(path = pathway) 
     
    if (parallel) { 
      require(doSNOW) 
      require(foreach) 
       
      cores = parallel::detectCores(logical = T) 
      if (!is.numeric(ncores)) 
        ncores <- cores[1] - 1 
      else 
        if (ncores > cores[1]) 
          stop("Number of cores must be equal to or less than available cores in s
ystem") 
       
      ncores = min(ncores, length(coords)) 
      print(paste("Running in parallel using", ncores, "cores")) 
       
      cl <- makeCluster(ncores) 
      registerDoSNOW(cl) 
       
      print("Simulating:") 
      pb <- 
        txtProgressBar( 
          min = 0, 
          max = length(coords), 
          style = 3, 
          char = "=" 
        ) 
      progress <- function(n) 
        setTxtProgressBar(pb, n) 
      opts <- list(progress = progress) 
       
      npoint <- 
        foreach( 
          point = 1:length(coords), 
          .packages = c("tidyverse", "terra"), 
          .export = c( 
            "read_u", 
            "read_v", 
            "wind_speed", 
            "wind_direction", 
            "next_cell" 



          ), 
          .options.snow = opts 
        ) %dopar% { 
          r <- terra::rast(file.path(data_path, files$file[1])) 
           
          # extract coordinates 
          long = coords[[point]][1] 
          lat = coords[[point]][2] 
           
          # empty raster for simulations 
          fct_raster <- r 
          fct_raster[] <- 0 
          names(fct_raster) <- "wind_forecast" 
           
          xlen <- terra::ncol(r) 
          ylen <- terra::nrow(r) 
           
          # weights for the output 
          wt <- c(1, 1, 1, 1, 3, 1, 1, 1, 1) 
           
          points_full <- 
            tibble( 
              x = numeric(), 
              y = numeric(), 
              nsim = numeric(), 
              nforecast = numeric() 
            ) 
           
          for (rep in seq_len(nsim)) { 
            points <- data.frame( 
              x = colFromX(r, long), 
              y = rowFromY(r, lat), 
              nforecast = 0 
            ) 
             
            n <- 1 
             
            for (f in seq_len(nforecast)) { 
              x <- points[n, 1] 
              y <- points[n, 2] 
               
              forecasts <- unique(files$forecast) 
               
              u <- 
                read_u( 
                  path = data_path, 
                  files_list = files, 
                  fcast = forecasts[f], 
                  lev = atm_level 
                ) 
              v <- 
                read_v( 
                  path = data_path, 
                  files_list = files, 
                  fcast = forecasts[f], 
                  lev = atm_level 
                ) 



               
              # calculate wind speed and direction 
              speed <- wind_speed(u = u, v = v) 
              direction <- wind_direction(u = u, v = v) 
               
              speed_ctr <- speed[y, x][1, 1] 
               
              ## calculate the number of steps based on wind speed and cell size 
              # if we choose at least 1 step each time there could be too many ste
ps overall 
              # when the speed is low that results in overshooting, i.e. trajector
ies longer than reality 
              # this could be happening because of coarse raster resolution 
              # so I made it random, to have some movement with low wind speed, bu
t not always 
              steps <- 
                max(sample(0:1, 1), ceiling(speed_ctr * 3600 / cellsize)) 
               
              if (steps < 1) 
                next 
               
              for (e in seq_len(steps)) { 
                nbr_dir <- c() 
                nbr_spd <- c() 
                for (i in c(-1, 0, 1)) { 
                  for (j in c(-1, 0, 1)) { 
                    if (x + i < xlen && y + j < ylen) { 
                      nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1]) 
                      nbr_spd <- 
                        c(nbr_spd, speed[y + j, x + i][1, 1]) 
                    } 
                  } 
                } 
                # multiply the weight with the speeds 
                probs <- wt * nbr_spd 
                # add some randomness to the direction 
                selected_dir <- 
                  sample(x = nbr_dir, 
                         size = 1, 
                         prob = probs) 
                selected_dir <- 
                  selected_dir + runif(1, -30, 30) 
                # keep the random direction within 0-360 
                selected_dir <- selected_dir %% 360 
                # calculate the next point 
                newpoint <- next_cell(selected_dir, x, y) 
                fct_raster[newpoint[2], newpoint[1]] <- 
                  fct_raster[newpoint[2], newpoint[1]][1, 1] + 1 
                 
                n <- n + 1 
                points[n, "x"] <- newpoint[1] 
                points[n, "y"] <- newpoint[2] 
                points[n, "nforecast"] <- f 
              } 
            } 
             
            if (full) 



              points_full <- bind_rows( 
                points_full, 
                as_tibble(xyFromCell( 
                  r, 
                  cellFromRowCol(r, 
                                 points[, "y"], 
                                 points[, "x"]) 
                )) %>% 
                  mutate( 
                    nsim = rep, 
                    nforecast = points$nforecast, 
                    x_start = long, 
                    y_start = lat 
                  ) 
              ) 
          } 
           
          if (full) 
            list(raster::raster(fct_raster), points_full) 
          else 
            raster::raster(fct_raster) 
        } 
      close(pb) 
      stopCluster(cl) 
    } else { 
      r <- terra::rast(file.path(pathway, files$file[1])) 
       
      npoint <- list() 
       
      print("Simulating:") 
      progress_bar = txtProgressBar( 
        min = 0, 
        max = length(coords) * nsim * nforecast, 
        style = 3, 
        char = "=" 
      ) 
       
      for (point in 1:length(coords)) { 
        # extract coordinates 
        long = coords[[point]][1] 
        lat = coords[[point]][2] 
         
        # empty raster for simulations 
        fct_raster <- r 
        fct_raster[] <- 0 
        names(fct_raster) <- "wind_forecast" 
         
        xlen <- terra::ncol(r) 
        ylen <- terra::nrow(r) 
         
        # weights for the output 
        wt <- c(1, 1, 1, 1, 3, 1, 1, 1, 1) 
         
        points_full <- 
          tibble( 
            x = numeric(), 
            y = numeric(), 



            nsim = numeric(), 
            nforecast = numeric() 
          ) 
         
        for (rep in seq_len(nsim)) { 
          points <- data.frame( 
            x = colFromX(r, long), 
            y = rowFromY(r, lat), 
            nforecast = 0 
          ) 
           
          n <- 1 
           
          forecast_hours <- seq_len(nforecast) 
          if (backwards) 
            forecast_hours <- rev(forecast_hours) 
           
          for (f in forecast_hours) { 
            x <- points[n, 1] 
            y <- points[n, 2] 
             
            forecasts <- unique(files$forecast) 
             
            u <- 
              read_u( 
                path = pathway, 
                files_list = files, 
                fcast = forecasts[f + difference], 
                lev = atm_level 
              ) 
            v <- 
              read_v( 
                path = pathway, 
                files_list = files, 
                fcast = forecasts[f + difference], 
                lev = atm_level 
              ) 
             
            # calculate wind speed and direction 
            speed <- wind_speed(u = u, v = v) 
            direction <- wind_direction(u = u, v = v) 
             
            if (backwards) 
              direction <- (direction + 180) %% 360 
             
            speed_ctr <- speed[y, x][1, 1] 
             
            ## calculate the number of steps based on wind speed and cell size 
            # if we choose at least 1 step each time there could be too many steps 
overall 
            # when the speed is low that results in overshooting, i.e. trajectorie
s longer than reality 
            # this could be happening because of course raster resolution 
            # so I made it random, to have some movement with low wind speed, but 
not always 
            steps <- 
              max(sample(0:1, 1), ceiling(speed_ctr * 3600 / cellsize)) 



             
            if (steps < 1) 
              next 
             
            for (e in seq_len(steps)) { 
              nbr_dir <- c() 
              nbr_spd <- c() 
              for (i in c(-1, 0, 1)) { 
                for (j in c(-1, 0, 1)) { 
                  if (x + i < xlen && y + j < ylen) { 
                    nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1]) 
                    nbr_spd <- 
                      c(nbr_spd, speed[y + j, x + i][1, 1]) 
                  } 
                } 
              } 
              # multiply the weight with the speeds 
              probs <- wt * nbr_spd 
              # add some randomness to the direction 
              selected_dir <- 
                sample(x = nbr_dir, 
                       size = 1, 
                       prob = probs) 
              selected_dir <- selected_dir + runif(1, -30, 30) 
              # keep the random direction within 0-360 
              selected_dir <- selected_dir %% 360 
              # calculate the next point 
              newpoint <- next_cell(selected_dir, x, y) 
              fct_raster[newpoint[2], newpoint[1]] <- 
                fct_raster[newpoint[2], newpoint[1]][1, 1] + 1 
               
              n <- n + 1 
              points[n, "x"] <- newpoint[1] 
              points[n, "y"] <- newpoint[2] 
              points[n, "nforecast"] <- f 
            } 
             
            setTxtProgressBar(progress_bar, 
                              value = (point - 1) * nsim * nforecast + 
                                (rep - 1) * nforecast + 
                                which(forecast_hours == f)) 
          } 
           
          if (full) { 
            points_full <- bind_rows( 
              points_full, 
              as_tibble(xyFromCell( 
                r, 
                cellFromRowCol(r, 
                               points[, "y"], 
                               points[, "x"]) 
              )) %>% 
                mutate( 
                  nsim = rep, 
                  nforecast = points$nforecast, 
                  x_start = long, 
                  y_start = lat 



                ) 
            ) 
            npoint[[point]] <- 
              list(raster::raster(fct_raster), points_full) 
             
          } else 
            npoint[[point]] <- raster::raster(fct_raster) 
        } 
      } 
    } 
     
    if (full) { 
      fct_raster <- stack(lapply(npoint, "[[", 1)) 
      fct_raster <- raster::calc(fct_raster, sum) 
      fct_raster[fct_raster == 0] <- NA 
      points_full <- lapply(npoint, "[[", 2) 
      return(list(rast(fct_raster), bind_rows(points_full))) 
    } else { 
      if (length(npoint) > 1) { 
        fct_raster <- 
          ifelse(length(npoint) > 1, 
                 stack(npoint), 
                 as(fct_raster, "Raster")) 
        fct_raster <- raster::calc(fct_raster, sum) 
      } else 
        fct_raster <- raster::raster(fct_raster) 
       
      fct_raster[fct_raster == 0] <- NA 
      return(rast(fct_raster)) 
    } 
  } 
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