
July 2023

Rapid real-time simulation of
wind-assisted long-ranged
dispersal of FAW in Australia
Final Technical Report

Plant Health
A U S T R A L I A

Location: Level 1

1 Phipps Close
DEAKIN ACT 2600

Phone: +61 2 6215 7700
Email: biosecurity@phau.com.au
Visit our website planthealthaustralia.com.au

An electronic copy of this plan is available through the email address listed above.

© Plant Health Australia Limited 2023

Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided
by other contributors, in which case copyright may be owned by another person. With the exception of any
material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-Non
Commercial-No Derivatives 4.0 International licence. Any use of this publication, other than as authorised
under this licence or copyright law, is prohibited.

creativecommons.org/licenses/by-nc-nd/4.0/ - This detail the relevant licence conditions, including the full legal
code. This licence allows for non-commercial redistribution, as long as it is passed along unchanged and in whole,
with credit to Plant Health Australia (as below).
In referencing this document, the preferred citation is:
Plant Health Australia Ltd (2023) Rapid real-time simulation of wind-assisted long-ranged dispersal of fall
armyworm in Australia. Plant Health Australia, Canberra, ACT.
This project has been funded by the Department of Agriculture, Fisheries and Forestry through its “Boosting
national interest research and development for Australia’s ongoing management of Spodoptera frugiperda (Fall
armyworm)” program with Plant Health Australia. For more information about this program visit
planthealthaustralia.com.au/fall-armyworm/

Disclaimer:
The material contained in this publication is produced for general information only. It is not intended as
professional advice on any particular matter. No person should act or fail to act on the basis of any material
contained in this publication without first obtaining specific and independent professional advice.
Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly
disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in
whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant
Health Australia.

mailto:biosecurity@phau.com.au
http://www.planthealthaustralia.com.au/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.planthealthaustralia.com.au/fall-armyworm/

Acknowledgements
This project Rapid real-time simulation of wind-assisted long-ranged dispersal of fall armyworm in
Australia was undertaken by Cesar Australia, managed by Plant Health Australia and funded by the
Department of Agriculture, Fisheries and Forestry through the program Boosting national research and
development for Australia’s ongoing management of Fall Armyworm.

•

•

•

•

•

•

https://cran.r-project.org/package=shiny

https://www.r-project.org/

extract the component from names
gfs_names <- function(path = "Data/") {
 require(dplyr)
 require(purrr)

 files <- list.files(path, pattern = "^gfs_", recursive = FALSE)

 gfs_names <- strsplit(files, "_") %>%
 map(function(x) {
 matrix(x, ncol = 6, byrow = FALSE) %>%
 as.data.frame() %>%
 setNames(c("gfs", "comp", "level", "date", "start", "forecast")) %>%
 dplyr::select(-gfs)
 }) %>%
 do.call(rbind.data.frame, .) %>%
 mutate(file = files) %>%
 relocate(file)

 return(gfs_names)
}

wind_direction <- function(u, v) {
 require(terra)
 at <- 180 + (atan2(u, v) * 180 / pi)
 ad <- terra::app(at, function(x)
 x %% 360)
 return(ad)
}

wind_speed <- function(u, v) {
 require(terra)
 r <- sqrt(v * v + u * u)

 return(r)
}

read the u component
read_u <-
 function(path = "Data/",
 files_list,
 fcast,
 lev = "850mb") {
 files_list %>%
 dplyr::filter(comp == "ugrd") %>%
 dplyr::filter(level == lev) %>%
 dplyr::filter(forecast == fcast) %>%
 pull(file) %>%
 file.path(path, .) %>%
 terra::rast()
 }
read the u component
read_v <-
 function(path = "Data/",
 files_list,
 fcast,
 lev = "850mb") {
 files_list %>%
 dplyr::filter(comp == "vgrd") %>%
 dplyr::filter(level == lev) %>%
 dplyr::filter(forecast == fcast) %>%
 pull(file) %>%
 file.path(path, .) %>%
 terra::rast()
 }

next_cell <- function(x, i, j) {
 inc <- 1
 # define the direction
 if (x <= 22.5 || x > 337.5) {
 ## N
 return(c(i, j + inc))
 } else if (x > 22.5 && x <= 67.5) {
 ## NE
 return(c(i - inc, j + inc))
 } else if (x > 67.5 && x <= 112.5) {
 ## E
 return(c(i - inc, j))
 } else if (x > 112.5 && x <= 157.5) {
 ## SE
 return(c(i - inc, j - inc))
 } else if (x > 157.5 && x <= 202.5) {
 ## S
 return(c(i, j - inc))
 } else if (x > 202.5 && x <= 247.5) {
 ## SW
 return(c(i + inc, j - inc))
 } else if (x > 247.5 && x <= 292.5) {
 ## W
 return(c(i + inc, j))
 } else if (x > 292.5 && x <= 337.5) {

 ## NW
 return(c(i + inc, j + inc))
 }
}

simulate wind dispersal with cellular automata
wind_sim <-
 function(data_path = "wind-data",
 # filepath to weather data
 coords = list(),
 # list of starting coordinates, each a vector of c(longitude, latitude)
 nforecast = 24,
 # number of forecast hours
 nsim = 10,
 # number of simulations to calculate frequency
 fdate = "20220524",
 # the forecast data
 fhour = "18",
 # the forecast hour
 atm_level = "850mb",
 cellsize = 25000,
 full = F,
 # if TRUE, generate a dataframe of endpoints per time step
 parallel = F,
 # if TRUE run in parallel
 ncores = F,
 # if FALSE (default) use max number of cores - 1. Else set to number of
cores to use
 backwards = F) {
 # if FALSE (default) run forwards simulation from starting point. Else backwar
ds from end point

 require(tidyverse)
 require(terra)

 difference = 0

 if (backwards) {
 fdate = as.character(format(
 as.POSIXct(lubridate::ymd(fdate) - lubridate::hours(23), format = '%m/%d/%
Y %H:%M:%S'),
 format = '%Y%m%d'
))

 fhour = as.character(lubridate::hour(
 lubridate::hours(as.numeric(fhour)) - lubridate::hours(nforecast)
) %% 24)

 # define the interval
 interval <- c("00", "06", "18")

 # calculate the index of the closest interval
 index <-
 which.min(abs(as.numeric(fhour) - as.numeric(interval)))

 # calculate the difference
 difference <-
 as.numeric(fhour) - as.numeric(interval[index])

 # get the corresponding interval
 fhour <- interval[index]
 }

 pathway <- file.path(data_path, fdate, fhour)

 files <- gfs_names(path = pathway)

 if (parallel) {
 require(doSNOW)
 require(foreach)

 cores = parallel::detectCores(logical = T)
 if (!is.numeric(ncores))
 ncores <- cores[1] - 1
 else
 if (ncores > cores[1])
 stop("Number of cores must be equal to or less than available cores in s
ystem")

 ncores = min(ncores, length(coords))
 print(paste("Running in parallel using", ncores, "cores"))

 cl <- makeCluster(ncores)
 registerDoSNOW(cl)

 print("Simulating:")
 pb <-
 txtProgressBar(
 min = 0,
 max = length(coords),
 style = 3,
 char = "="
)
 progress <- function(n)
 setTxtProgressBar(pb, n)
 opts <- list(progress = progress)

 npoint <-
 foreach(
 point = 1:length(coords),
 .packages = c("tidyverse", "terra"),
 .export = c(
 "read_u",
 "read_v",
 "wind_speed",
 "wind_direction",
 "next_cell"

),
 .options.snow = opts
) %dopar% {
 r <- terra::rast(file.path(data_path, files$file[1]))

 # extract coordinates
 long = coords[[point]][1]
 lat = coords[[point]][2]

 # empty raster for simulations
 fct_raster <- r
 fct_raster[] <- 0
 names(fct_raster) <- "wind_forecast"

 xlen <- terra::ncol(r)
 ylen <- terra::nrow(r)

 # weights for the output
 wt <- c(1, 1, 1, 1, 3, 1, 1, 1, 1)

 points_full <-
 tibble(
 x = numeric(),
 y = numeric(),
 nsim = numeric(),
 nforecast = numeric()
)

 for (rep in seq_len(nsim)) {
 points <- data.frame(
 x = colFromX(r, long),
 y = rowFromY(r, lat),
 nforecast = 0
)

 n <- 1

 for (f in seq_len(nforecast)) {
 x <- points[n, 1]
 y <- points[n, 2]

 forecasts <- unique(files$forecast)

 u <-
 read_u(
 path = data_path,
 files_list = files,
 fcast = forecasts[f],
 lev = atm_level
)
 v <-
 read_v(
 path = data_path,
 files_list = files,
 fcast = forecasts[f],
 lev = atm_level
)

 # calculate wind speed and direction
 speed <- wind_speed(u = u, v = v)
 direction <- wind_direction(u = u, v = v)

 speed_ctr <- speed[y, x][1, 1]

 ## calculate the number of steps based on wind speed and cell size
 # if we choose at least 1 step each time there could be too many ste
ps overall
 # when the speed is low that results in overshooting, i.e. trajector
ies longer than reality
 # this could be happening because of coarse raster resolution
 # so I made it random, to have some movement with low wind speed, bu
t not always
 steps <-
 max(sample(0:1, 1), ceiling(speed_ctr * 3600 / cellsize))

 if (steps < 1)
 next

 for (e in seq_len(steps)) {
 nbr_dir <- c()
 nbr_spd <- c()
 for (i in c(-1, 0, 1)) {
 for (j in c(-1, 0, 1)) {
 if (x + i < xlen && y + j < ylen) {
 nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1])
 nbr_spd <-
 c(nbr_spd, speed[y + j, x + i][1, 1])
 }
 }
 }
 # multiply the weight with the speeds
 probs <- wt * nbr_spd
 # add some randomness to the direction
 selected_dir <-
 sample(x = nbr_dir,
 size = 1,
 prob = probs)
 selected_dir <-
 selected_dir + runif(1, -30, 30)
 # keep the random direction within 0-360
 selected_dir <- selected_dir %% 360
 # calculate the next point
 newpoint <- next_cell(selected_dir, x, y)
 fct_raster[newpoint[2], newpoint[1]] <-
 fct_raster[newpoint[2], newpoint[1]][1, 1] + 1

 n <- n + 1
 points[n, "x"] <- newpoint[1]
 points[n, "y"] <- newpoint[2]
 points[n, "nforecast"] <- f
 }
 }

 if (full)

 points_full <- bind_rows(
 points_full,
 as_tibble(xyFromCell(
 r,
 cellFromRowCol(r,
 points[, "y"],
 points[, "x"])
)) %>%
 mutate(
 nsim = rep,
 nforecast = points$nforecast,
 x_start = long,
 y_start = lat
)
)
 }

 if (full)
 list(raster::raster(fct_raster), points_full)
 else
 raster::raster(fct_raster)
 }
 close(pb)
 stopCluster(cl)
 } else {
 r <- terra::rast(file.path(pathway, files$file[1]))

 npoint <- list()

 print("Simulating:")
 progress_bar = txtProgressBar(
 min = 0,
 max = length(coords) * nsim * nforecast,
 style = 3,
 char = "="
)

 for (point in 1:length(coords)) {
 # extract coordinates
 long = coords[[point]][1]
 lat = coords[[point]][2]

 # empty raster for simulations
 fct_raster <- r
 fct_raster[] <- 0
 names(fct_raster) <- "wind_forecast"

 xlen <- terra::ncol(r)
 ylen <- terra::nrow(r)

 # weights for the output
 wt <- c(1, 1, 1, 1, 3, 1, 1, 1, 1)

 points_full <-
 tibble(
 x = numeric(),
 y = numeric(),

 nsim = numeric(),
 nforecast = numeric()
)

 for (rep in seq_len(nsim)) {
 points <- data.frame(
 x = colFromX(r, long),
 y = rowFromY(r, lat),
 nforecast = 0
)

 n <- 1

 forecast_hours <- seq_len(nforecast)
 if (backwards)
 forecast_hours <- rev(forecast_hours)

 for (f in forecast_hours) {
 x <- points[n, 1]
 y <- points[n, 2]

 forecasts <- unique(files$forecast)

 u <-
 read_u(
 path = pathway,
 files_list = files,
 fcast = forecasts[f + difference],
 lev = atm_level
)
 v <-
 read_v(
 path = pathway,
 files_list = files,
 fcast = forecasts[f + difference],
 lev = atm_level
)

 # calculate wind speed and direction
 speed <- wind_speed(u = u, v = v)
 direction <- wind_direction(u = u, v = v)

 if (backwards)
 direction <- (direction + 180) %% 360

 speed_ctr <- speed[y, x][1, 1]

 ## calculate the number of steps based on wind speed and cell size
 # if we choose at least 1 step each time there could be too many steps
overall
 # when the speed is low that results in overshooting, i.e. trajectorie
s longer than reality
 # this could be happening because of course raster resolution
 # so I made it random, to have some movement with low wind speed, but
not always
 steps <-
 max(sample(0:1, 1), ceiling(speed_ctr * 3600 / cellsize))

 if (steps < 1)
 next

 for (e in seq_len(steps)) {
 nbr_dir <- c()
 nbr_spd <- c()
 for (i in c(-1, 0, 1)) {
 for (j in c(-1, 0, 1)) {
 if (x + i < xlen && y + j < ylen) {
 nbr_dir <- c(nbr_dir, direction[y + j, x + i][1, 1])
 nbr_spd <-
 c(nbr_spd, speed[y + j, x + i][1, 1])
 }
 }
 }
 # multiply the weight with the speeds
 probs <- wt * nbr_spd
 # add some randomness to the direction
 selected_dir <-
 sample(x = nbr_dir,
 size = 1,
 prob = probs)
 selected_dir <- selected_dir + runif(1, -30, 30)
 # keep the random direction within 0-360
 selected_dir <- selected_dir %% 360
 # calculate the next point
 newpoint <- next_cell(selected_dir, x, y)
 fct_raster[newpoint[2], newpoint[1]] <-
 fct_raster[newpoint[2], newpoint[1]][1, 1] + 1

 n <- n + 1
 points[n, "x"] <- newpoint[1]
 points[n, "y"] <- newpoint[2]
 points[n, "nforecast"] <- f
 }

 setTxtProgressBar(progress_bar,
 value = (point - 1) * nsim * nforecast +
 (rep - 1) * nforecast +
 which(forecast_hours == f))
 }

 if (full) {
 points_full <- bind_rows(
 points_full,
 as_tibble(xyFromCell(
 r,
 cellFromRowCol(r,
 points[, "y"],
 points[, "x"])
)) %>%
 mutate(
 nsim = rep,
 nforecast = points$nforecast,
 x_start = long,
 y_start = lat

)
)
 npoint[[point]] <-
 list(raster::raster(fct_raster), points_full)

 } else
 npoint[[point]] <- raster::raster(fct_raster)
 }
 }
 }

 if (full) {
 fct_raster <- stack(lapply(npoint, "[[", 1))
 fct_raster <- raster::calc(fct_raster, sum)
 fct_raster[fct_raster == 0] <- NA
 points_full <- lapply(npoint, "[[", 2)
 return(list(rast(fct_raster), bind_rows(points_full)))
 } else {
 if (length(npoint) > 1) {
 fct_raster <-
 ifelse(length(npoint) > 1,
 stack(npoint),
 as(fct_raster, "Raster"))
 fct_raster <- raster::calc(fct_raster, sum)
 } else
 fct_raster <- raster::raster(fct_raster)

 fct_raster[fct_raster == 0] <- NA
 return(rast(fct_raster))
 }
 }

Plant Health Australia
ABN 97 092 607 997
Level 1, 1 Phipps Close
Deakin ACT 2600

Phone	 02 6215 7700
Email	 biosecurity@phau.com.au
planthealthaustralia.com.au

PH
A1

8-
07

5

Plant Health
A U S T R A L I A

	FAW report Cover 4 (web)
	Inside cover 4
	Final report v1.1
	Contents
	Executive summary
	Background
	Methods
	Cellular automata model for wind-assisted long-distance dispersal
	Comparison with the NOAA HYSPLIT simulations
	Validation against empirical data on FAW migration

	Results
	Comparison with the NOAA HYSPLIT simulations
	Validation against empirical data on FAW migration
	Web tool

	Conclusion
	Acknowledgments
	References
	Appendix 1. R code to run CA wind-assisted dispersal model
	Background
	Model structure

	FAW report Cover 4 (web)

