

Elucidating the life cycle of myrtle rust: *not that easy...*

Louise Morin, Mark J. Talbot and Morag Glen Myrtle Rust Workshop – 24-25 July 2013

CSIRO ECOSYSTEM SCIENCES/BIOSECURITY FLAGSHIP www.csiro.au

Introduction

- Rust fungus life cycle why do we need to know?
 - Evolutionary potential
 - Appropriate management strategies
- Many different life cycles:
 - Up to five spore stages
 - Clonal reproduction (+ / genetic recombination)
 - Autoecious vs heteroecious

Introduction

Puccinia graminis (stem rust of cereals)

- Macrocyclic
- Heteroecious
- Genetic recombination
 High genotypic diversity
 High capacity to adapt

http://thescientistgardener.blogspot.com.au/2010/09/orange-mystery-dust.html

CSIRC

Puccinia psidii s. l. life cycle - current conjecture

- Hemicyclic
 - urediniopores & teliospores
- Autoecious
- Basidiospore infections
 - Produce uredinia/urediniospores (= uredinioid aecia)

Figueiredo *et al.* (1984) Alfenas & Zauza (unpublished)

CSIRC

Hemicyclic rust fungi – possible life cycles

- Heteroecious with an undiscovered alternate host
- Teliospores no longer functional and rust solely survives through continued cycling via urediniospores or systemic mycelium in plants
- Basidiospores give rise to uredinia upon host infection

 conclusively demonstrated in one case...

Hemicyclic rust fungi – an example

• Puccinia allii s.l.

Anikster et al. (2004)

CSIRO

Study objectives

- Perform a series of inoculations using basidiospores of *P. psidii* s.l.
- Molecularly characterise sori produced
- Investigate the rust's nuclear behaviour at different stages of development

Life cycle of myrtle rust | Louise Morin

Inoculation experiments – methods

+ in vitro germination tests

csiro

Inoculation experiments – results

Inoculation no.	Teliospore source (plant sp.)			Inoculation method			Material inoculated		Sori produced
	Agonis flexuosa 'Afterdark'	Lindsayomyrtus racemoides	Syzygium francissii	Teliospore suspension in oil	Teliospore suspension in HFE	Natural basidiospore discharge	Leaves attached to plants	Detached leaves	
1	✓			✓			~		uredinial
2	V				~		~		uredinial
3		\checkmark				1	\checkmark		none
4		✓			✓		\checkmark		uredinial*
5		4				1	~		none
6		✓				√		√	uredinial*
7			\checkmark			\checkmark		~	none
8			✓			✓		\checkmark	none

Some urediniospores, germinated or not, were observed among teliospores on water agar and occasionally among basidiospores in the *in vitro* germination tests.

* Single-sorus isolates analysed with microsatellites

CSIRC

Microsatellite analysis – results

original single-uredinial sorus isolate from which teliospores were sourced for inoculations

eight single-sorus isolates recovered from inoculations

CSIRC

Same microsatellite multilocus genotype (based on eight loci analysed)

Nuclear behaviour – results

Sections through uredinia stained with WGA (fungal cell wall specific – green) and DAPI (DNA/nucleus specific – blue)

Nuclear behaviour – results

Spores stained with DAPI (DNA/nucleus specific – blue)

Development of metabasidium from germinated teliospore

Life cycle of myrtle rust | Louise Morin

Nuclear behaviour – results

Metabasidia at different stages of development

Binucleate basidiospores

Life cycle of myrtle rust | Louise Morin

Inoculation experiments – discussion

- Inoculated leaves never developed spermogonia (=pycnia).
- Doubt that uredinial-like sori observed were the result of basidiospore infections.
 - Urediniospores were present in some of the *in vitro* tests of experiments with naturally discharged basidiospores
- Not possible to be totally certain that telia are completely free of urediniospores prior to use in experiments.

Coutinho et al. (1998)

Microsatellite analysis – discussion

- Microsatellite loci used are heterozygous in the rust population present in Australia (Glen *unpublished*).
- Would have expected to detect some variation in microsatellite genotype if sori had originated from basidiospore infections.
 - considering meiotic divisions lead to basidiospore development
- Independence of microsatellite loci not verified:
 - Limited knowledge of genomic structure of *P. psidii*
 - Number of chromosome unknown
- … Nonetheless apparent lack of detectable sexual recombination in these isolates support that sori most likely originated from urediniospore infections.

Nuclear behaviour – discussion

- This type of nuclear cycle:
 - Commonly occurs in macrocyclic and demicyclic species
 - Less frequent in microcyclic species
- No indication that teliospores were non-functional
- Four-celled (not two-celled) metabasidium developed
- Tri- or tetra-nucleate basidiospores never observed

Infection by basidiospore – possibilities

uredinia (e.g. Puccinia allii) uredinia wну Not?????

Life cycle of myrtle rust | Louise Morin

Additional work recommended by reviewers

- Investigate the fate of basidiospores on leaf surface:
 - Do they germinate? Does penetration and colonisation occur?
 - Examine a large number
 - If infection detected then...

- Challenging
- Consider inoculation with single germinated teliospores
- A large number would be required
- If uredinia developed = proof of no alternate host in life cycle

Conclusion I

- Proving the nonexistence or permanent loss of spore stages is a challenge.
- Experimental inoculations to confirm atypical life cycle and investigations of nuclear cycle have been published for very few rust fungi.
 - Hemicyclic rusts have rarely been investigated

Conclusion II

- A recent population genetic study in Brazil revealed a clonal population structure for *P. psidii* s.l.
 - teliospores are infrequently operational, or
 - putative alternate host is extremely rare or even extinct in the native range.
- A single genotype observed in each of the recent incursions in Hawai'i and Australia
 - teliospores are infrequently operational, or
 - putative alternate host probably not present in the introduced range.
- *P. psidii* s.l. populations may be primarily maintained via continued asexual reproduction, with mutation as the key process for emergence of new genotypes.

Thank you

CSIRO Ecosystem Sciences Louise Morin

- t +61 2 6246 4355
- e louise.morin@csiro.au
- w www.csiro.au

Acknowledgement

 Geoff Pegg (DAFF QLD), Karanjeet Sandhu (University of Sydney) and Angus Carnegie (DPI NSW) for searching for fresh teliospores of *P. psidii* for additional work.

CSIRO ECOSYSTEM SCIENCES/BIOSECURITY FLAGSHIP www.csiro.au

